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Graphical models

Graphical models

Bayesian networks (artificial intelligence).
Factor graphs (image recognition).
Tanner graphs (coding theory).
Markov networks (statistical physics).
etc.

Common features:
A (sparse) graph G = (V ,E).
Random variables u, each associated with a vertex u ∈ V .
An efficiently specifiable distribution P(V ) = P(u1,u2, . . .).
Edges e = (u, v) encode some kind of dependency relation in P.
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Graphical models

Conditional independence

Let A, B, and C be three random variables with distribution P(A,B,C).
We say that A and C are independent given B if

Conditional mutual information vanishes I(A : C|B) = 0.
P(A,B,C) = P(A)P(B|A)P(C|B) which suggests A→ B → C.
P(A,B,C) = P(A|B)P(B|C)P(C) which suggests A← B ← C.
P(A,B,C) = P(A|B)P(B)P(C|B) which suggests A← B → C.

Defining the mutual distribution P(A : B) = P(A,B)
P(A)P(B) , we can

characterize conditional independence by
P(A,B,C) = P(A)P(B)P(C)P(A : B)P(B : C) which does not
suggest a causal relation.
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Graphical models

Markov random fields

Given a graph G = (V ,E) and a distribution P(V ), the pair (G,P(V ))
forms a Markov Random Field iff:

For all U ⊂ V , I(U : V − U − n(U)|n(U)) = 0.
The correlations are shielded by the neighbors.
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Graphical models

Hammersley-Clifford Theorem

Theorem (Hammersley-Clifford)

The pair (G,P(V )) is a positive (P > 0) random Markov field iff

P(V ) =
1
Z

∏
C∈C(G)

ψ(C).

Special case: bifactor states (pairwise RMF)

When largest clique size is 2 (2d square lattice) or when ψ(C) is trivial
for |C| > 2, MRF are of the form

P(V ) =
1
Z

∏
v∈V

µ(v)
∏

(u,v)∈E

ν(u : v)

=
1
Z

exp
{
− β

(∑
v

hv +
∑
〈u,v〉

kuv

)}
.
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Belief propagation

Description of the algorithm

Task (basic case)

Given a graph G = (V ,E) and a bifactor distribution P(V ) on G,
compute marginals

P(v) =
∑
V−v

P(V ).

Algorithm architecture

One processor per random variable v .
Messages exchanged between processors related by an edge.
Outgoing messages at v depend on local "fields" µ(v) and
ν(u : v) and received messages at v .
The marginal P(v) is estimated by a belief b(v) that depends on
the received messages at v and the local fields.
Exact when G is a tree and complexity = diameter(G).
Good heuristic on loopy graphs.
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Belief propagation

Belief propagation algorithm

Algorithm

Initialization mu→v (v) = cte.
Iterations mu→v (v) ∝

∑
u µ(u)ν(u : v)

∏
v ′∈n(u)−v mv ′→u(u).

Beliefs b(u) ∝ µ(u)
∏

v∈n(u) mv→u(u).
b(u, v) ∝ µ(u)µ(v)ν(u : v)

∏
w∈n(u)−v mw→u(u)

∏
w∈n(v)−u mw→v (v).
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Quantum graphical models

Outline

1 Graphical models

2 Belief propagation

3 Quantum graphical models
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5 Examples
Quantum turbo-codes
Many-body simulations
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Quantum graphical models

System description

A (sparse) graph G = (V ,E).
Each vertex u is associated a quantum system (spin) u with
Hilbert space Hu.
An efficiently specifiable quantum state ρV on HV =

⊗
u∈V Hu.

Edges e = (u, v) encode some kind of dependency relation in ρV .

How to specify ρV ?
Many possible generalizations of classical bifactor states.
They have applications in different contexts:

Quantum many-body.
Quantum error correction.
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They have applications in different contexts:

Quantum many-body.
Quantum error correction.
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Quantum graphical models

Non-commutative generalization

Bifactor state: P(V ) = 1
Z
∏

v∈V µ(v)
∏

(u,v)∈E ν(u : v).
Quantum generalization: µu and νu:v operators on Hu and Hu ⊗Hv
respectively.
Problems:

Ambiguity in order of the terms.
Not necessarily positive.

Define the family of products: A ?(n) B = (A
1

2n B
1
n A

1
2n )n

n = 1: A ? B = A
1
2 BA

1
2 (measurement, QEC).

n =∞: A� B = exp(log A + log B) (Hamiltonian, many-body).
Intermediate n: Trotter-Suzuki decomposition.
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Quantum graphical models

Quantum generalisations

In analogy with the classical case, define

Conditional state ρ(n)
A|B = ρ−1

B ?(n) ρAB.

Mutual state ρ(n)
A:B = (ρ−1

A ρ−1
B ) ?(n) ρAB.

David Poulin (Caltech) Quantum Belief Propagation Santa Fe’08 14 / 33



Quantum graphical models

Quantum conditional independence

Given three quantum systems A,B, and C and a joint state ρABC , we
say that A and C are independent given B if I(A : C|B) = 0 which
implies:

ρABC = ρA ?
(n) ρ

(n)
B|A ?

(n) ρ
(n)
C|B which suggests A→ B → C.

ρABC = ρC ?
(n) ρ

(n)
A|B ?

(n) ρ
(n)
B|C which suggests A← B ← C.

ρABC = ρB ?
(n) ρ

(n)
A|B ?

(n) ρ
(n)
C|B which suggests A← B → C.

These conditions differ for different values of n and differ between each
other.

ρABC = (ρAρBρC) ?(n) (ρ
(n)
A:Bρ

(n)
B:C) is a quantum bifactor network.
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Quantum graphical models

Quantum conditional independence

Theorem
For n =∞, all conditions are equivalent and imply conditional
independence.

Theorem
For n = 1, the first two conditions are equivalent and imply conditional
independence.

Theorem (Quantum Hammersley-Clifford)

If (ρV ,G) is a positive quantum Markov network, then

ρV =
⊙

C∈C(G)

σC = exp
{
− β

∑
C∈C(G)

hC

}
.
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Quantum belief propagation

Outline

1 Graphical models

2 Belief propagation

3 Quantum graphical models

4 Quantum belief propagation

5 Examples
Quantum turbo-codes
Many-body simulations
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Quantum belief propagation

The algorithm

Cut and paste from previous section.
Don’t forget to search for

Q
and replace by ?(n).

M. Hastings ’07
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Quantum belief propagation

Convergence

Let G = (V ,E) be a graph and let

ρV =
1
Z

(⊗
u∈V

µu

)
?(n)

( ∏
(u,v)∈E

νu:v

)
be a bifactor state on G.

Theorem
If G is a tree and (G, ρV ) is a quantum Markov random field, then the
beliefs bu converge to the correct marginals ρu = TrV−u{ρV} in a time
proportional to depth(G).

Theorem
If G is a tree and n = 1, then the beliefs bu converge to the correct
marginals ρu = TrV−u{ρV} in a time proportional to depth(G).
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Examples

Outline

1 Graphical models

2 Belief propagation

3 Quantum graphical models

4 Quantum belief propagation

5 Examples
Quantum turbo-codes
Many-body simulations
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Examples Quantum turbo-codes

Outline

1 Graphical models

2 Belief propagation

3 Quantum graphical models

4 Quantum belief propagation

5 Examples
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Examples Quantum turbo-codes

Turbo code performances on depolarization channel

0.08 0.09 0.1 0.11 0.12 0.13
10!5

10!4

10!3

10!2

10!1

100

50
100
250
500
2000
4000

Overhead = 9
Memory = 3

Channel error probability

Bl
oc

k 
er

ro
r p

ro
ba

bi
lity

Rate is fixed at 1
9 .

Error probability decreases as
number of encoded qubits
increases.
Error-free "phase transition" at
0.1.
With finite size, 10−4 threshold
around ε = 0.08.

Best performance to date at this rate.

Poulin, Tillich, and Ollivier’07.
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Examples Quantum turbo-codes

Code performances

2328 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 10, OCTOBER 2004

Fig. 10. Summary of performances of several quantum codes on the 4-ary symmetric channel (depolarizing channel), treated (by all decoding algorithms shown
in this figure) as if the channel were a pair of independent binary-symmetric channels. Each point shows the marginal noise level at which the block error
probability is . In the case of dual-containing codes, this is the noise level at which each of the two identical constituent codes (see (19)) has an error probability
of . As an aid to the eye, lines have been added between the four unicycle codes U; between a sequence of Bicycle codes B all of block length
with different rates; and between a sequence of of BCH codes with increasing block length. The curve labeled S2 is the Shannon limit if the correlations between

errors and errors are neglected, (45). Points “ ” are codes invented elsewhere. All other point styles denote codes presented for the first time in this paper.

Fig. 11. Summary of performances of several codes on the 4-ary symmetric channel (depolarizing channel). The additional points at the right and bottom are as
follows. 3786(B,4SC): a code of construction B (the same code as its neighbor in the figure) decoded with a decoder that exploits the known correlations between

errors and errors. 3786(B,D): the same code as the code to its left in the figure, simulated with a channel where the qubits have a diversity of
known reliabilities; errors and errors occur independently with probabilities determined from a Gaussian distribution; the channel in this case is not the 4-ary
symmetric channel, but we plot the performance at the equivalent value of . : an algebraically constructed quantum code (not a sparse-graph code)
from [10].

MacKay, Mitchison, McFadden, IEEE’04.
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Examples Many-body simulations

Outline

1 Graphical models

2 Belief propagation

3 Quantum graphical models

4 Quantum belief propagation

5 Examples
Quantum turbo-codes
Many-body simulations
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Examples Many-body simulations

One dimensional classical system

Consider the 1d classical system with hamiltonian H =
∑

i hi +
∑
〈ij〉 Jij .

Its Gibbs distribution is (µ(i) = e−βhi and ν(i , j) = e−βJij )

ρ(i1, i2, . . .) =
1
Z

e−βH(i1,i2,...)

=
1
Z
µ(i1)ν(i1, i2)µ(i2)ν(i2, i3)µ(i3) . . .

So the partition function can be evaluated step by step:

m1→2(i2) =
∑

i1

µ(i1)ν(i1, i2)

m2→3(i3) =
∑

i2

mi1→i2(i2)µ(i2)ν(i2, i3)

m3→4(i4) =
∑

i3

mi2→i3(i3)µ(i3)ν(i3, i4)
...

Z =
∑
iN

miN−1→iNµ(iN)
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ρ(i1, i2, . . .) =
1
Z

e−βH(i1,i2,...)

=
1
Z
µ(i1)ν(i1, i2)µ(i2)ν(i2, i3)µ(i3) . . .

So the partition function can be evaluated step by step:

m1→2(i2) =
∑

i1

µ(i1)ν(i1, i2)

m2→3(i3) =
∑

i2

mi1→i2(i2)µ(i2)ν(i2, i3)

m3→4(i4) =
∑

i3

mi2→i3(i3)µ(i3)ν(i3, i4)
...

Z =
∑
iN

miN−1→iNµ(iN)
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Examples Many-body simulations

One dimensional quantum system

Consider the 1d quantum system with hamiltonian H =
∑

i hi +
∑
〈ij〉 Jij .

Its Gibbs distribution is (µi = e−βhi and νi:j = e−βJij )

ρV =
1
Z

e−βH =
1
Z
µi1 � νi1:i2 � µi2 � νi2:i3 � µi3 . . .

Bottleneck for computing Z :

TrA{µA � νA:B � µB � νB:C � µC} 6= TrA{µA � νA:B} � µB � νB:C � µC

But it is equal when I(A : C|B) = 0.
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Examples Many-body simulations

Effective thermal hamiltonian

-5 -4 -3 -2 -1 0 1 2 3 4 5... ...

ρ =
1
Z

exp{−βH}H =
∞∑

i=−∞
hi + Ji,i+1

Effective Thermal Hamiltonian =
∑∞

i=1 hi + Ji,i+1 +V1 +V2+V3+V4 . . .
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Examples Many-body simulations

Effective thermal hamiltonian

-5 -4 -3 -2 -1 0 1 2 3 4 5... ...

ρ′ = Tr−∞...−1{ρ} ρ′ =
1
Z ′ exp{−βHeff}
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Examples Many-body simulations

One dimensional quantum system

σ1−4 = e−β(h1+h2+h3+h4+J12+J23+J34)

σ′2−4 = Tr1{σ1−4} h′2−4 = −1
β

logσ′2−4

σ2−5 = e−β(h′2−4+h5+J45)

σ′3−5 = Tr2{σ2−5} h′3−5 = −1
β

logσ′3−5

σ3−6 = e−β(h′3−5+h6+J56)

...
Z = Tr{σN−3,N−2,N−1,N}
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Examples Many-body simulations

Critical 1d Ising model

0 2 4 6 8 10
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(Ẽ
−

E
)·
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β

Replica

Sliding window
TEBD

Bilgin and Poulin ’07.

Replica: Trotter decomposition Nτ = 10 (bifactor ?(10)).
TEBD: Time-evolving block decimation (DMRG χ = 150).
Sliding window ` = 6 (bifactor �).
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Examples Many-body simulations

1D anti-ferromagnetic Heisenberg model
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Bethe Ansatz: exact (A.Klümper and D. C. Johnston, PRL’00).
Sliding window ` = 9 (bifactor �).
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Examples Many-body simulations

Phase diagram
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Finally, we note that much of the phase diagram is surprisingly stable to variation in Nt.

We have explored various regions of the phase space at Nt = 6, 7, 8, 9, 10, 11. The classical

line (Bt = 0) at all temperatures is completely stable down to Nt = 1 as expected. Perhaps

more surprisingly, moving between Nt = 8 and Nt = 10, qEA is essentially stable below

Bt = 1 down to temperatures τ ∼ 0.15. Of course, the high field, low temperature part

of the phase transition curve moves downward as the finite discretization asymptote goes

towards the τ = 0 axis. See Figure 6 for the low temperature critical curves estimated using

vertical stripes run at five different temperatures (corresponding to β = 3.5, 4, 4.5, 5, 5.5) at

various Nt.

FIG. 4: (a) Phase diagram at q = 3. The solid phase transition curve has been calculated at

Nt = 10, Nrods = 2500, Niter = 1000Nrods on a fine mesh in the (τ, Bt) plane. The vertical dotted

line is the asymptotic critical line for large Bt at Nt = 10 (ie τ = τc/Nt). The points marked x

with error bars indicate Nt → ∞ fits based on Figure 6. The dashed transition curve is a weighted

quadratic fit through the estimated low temperature points and the Nt = 10 points in the range

0.5 < τ < 1. This leads to an estimated Bc
t = 1.775 ± 0.03. As this fit is clearly heuristic, we

have suggested a much larger range for our estimate of Bc
t in the Figure. Our phase diagram

clearly disagrees with that of [18], who treat the identical model using a spherical approximation.

The stars and stripes indicate points in the phase space which we have investigated in more detail

below. (b) The average von Neumann entropy of a central spin as a function of (τ, Bt).
Laumann, Scardicchio, and Sondhi ’07, Bilgin and Poulin.
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Examples Many-body simulations

2D anti-ferromagnetic Heisenberg model

!"" #"" $"" %""
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Quantum Monte Calrlo: M.S. Makivić and H.-Q. Ding PRB’91.
10th-order J/T expansion.
Quantum Belief propagation, window size 7.
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Summary

Belief propagation operating on graphical models is a powerful,
highly parrallelizable, heuristic for all sorts of inference problems.
Many of these properties carry over to the quantum realm:

Half Hammersley-Clifford Theorem (Markov⇒ Gibbs).

Good heuristic for iterative decoding of sparse and quantum turbo
codes.
Good heuristic for many-body systems on graphs with no small
loops.

See poster by Ersen Bilgin for more details
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Half Hammersley-Clifford Theorem (Markov⇒ Gibbs).

n=1

Trees

Markov networks Markov networks

Trees

a) b)
Bifactor networks

Bifactor networks

Heisenberg-AF

C
liques

>
2

Cliques > 2

Good heuristic for iterative decoding of sparse and quantum turbo
codes.
Good heuristic for many-body systems on graphs with no small
loops.

See poster by Ersen Bilgin for more details

David Poulin (Caltech) Quantum Belief Propagation Santa Fe’08 33 / 33



Summary

Belief propagation operating on graphical models is a powerful,
highly parrallelizable, heuristic for all sorts of inference problems.
Many of these properties carry over to the quantum realm:

Half Hammersley-Clifford Theorem (Markov⇒ Gibbs).

n=1

Trees

Markov networks Markov networks

Trees

a) b)
Bifactor networks

Bifactor networks

Heisenberg-AF

C
liques

>
2

Cliques > 2

Good heuristic for iterative decoding of sparse and quantum turbo
codes.
Good heuristic for many-body systems on graphs with no small
loops.

See poster by Ersen Bilgin for more details

David Poulin (Caltech) Quantum Belief Propagation Santa Fe’08 33 / 33



Summary

Belief propagation operating on graphical models is a powerful,
highly parrallelizable, heuristic for all sorts of inference problems.
Many of these properties carry over to the quantum realm:

Half Hammersley-Clifford Theorem (Markov⇒ Gibbs).

n=1

Trees

Markov networks Markov networks

Trees

a) b)
Bifactor networks

Bifactor networks

Heisenberg-AF

C
liques

>
2

Cliques > 2

Good heuristic for iterative decoding of sparse and quantum turbo
codes.
Good heuristic for many-body systems on graphs with no small
loops.

See poster by Ersen Bilgin for more details

David Poulin (Caltech) Quantum Belief Propagation Santa Fe’08 33 / 33


